

FREQUENCY MODULATION Models 42-355, code 121; 42-390, code 121

SPECIFICATIONS

MODEL 42-355

Circuit Description: Models 42-355 and 42-390 are eight (8) tube superheterodyne radios designed for reception of standard, shortwave and Frequency Modulation broadcast stations, and the sound of a television program tuned in by special Philco Television Radios. The radio incorporates nine electric push-buttons for automatically tuning five stations in the standard broadcast band, and selects the standard, shortwave and frequency modulation tuning bands; Philco built-in low impedance loop aerials for standard, S. W. and F. M. reception; three tuning ranges; two intermediate frequency stages; two tone controls (treble and bass); audio bass frequency compensation in the volume control circuit, push-pull pentode audio output with screen phase inversion.

In general, these models are similar in design with the exception of the cabinets and loop aerials. Model 42-355 is assembled in a table model cabinet, and Model 42-390 is assembled in a console cabinet. The differences between the two models are indicated in the schematic diagram and replacement parts list.
Power Supply: 115 volts, 60 cycles A. C.
This model can also be operated on 25 -cycle current. To do this it is necessary to replace the power transformer as indicated in the parts list for 25 -cycle operation.

Power Consumption: 70 watts.
Intermediate Frequency: Standard Tuning, 455 KC ; F. M. Channel, 4.3 MC .
Frequency Tuning Ranges: 540 to 1720 KC ; 9 to 15 MC , and 42 to 50 MC (F. M.).

Audio Output: 3 watts.
Philco Tubes Used: XXL, oscillator; XXL, converter; 7V7, 1st I. F.; 7V7, 2nd I. F.; XXFM, 2nd detector-1st audio; two 41 audio output, and an 84 rectifier.

Cabinet Dimensions:	Height	Width	Depth
Model $42-355$	$113 / 8^{\prime \prime}$	$20^{\prime \prime}$	$13^{\prime \prime}$
Model $42-390$	$3934^{\prime \prime}$	$30^{\prime \prime}$	$1258^{\prime \prime}$

EXTERNAL AERIAL CONNECTIONS

The built-in loop aerial system is designed to operate without an outside aerial on ground and to give exceptionally high receiving performance of stations on the standard or shortwave frequencies.
T operate the radio in steel reinforced buildings and other shielded locations where signal strength is weak, an external aerial is recommended. Three different types of aerial combinations are available, to improve reception on the various tuning ranges as follows:
1-For Additional Sensitivity on Frequency Modulation only: *Philco Dipole Outdoor Aerial, Part No. 45-2926.
The plug at the end of the transmission line is inserted in the socket at the back of the chassis in place of the plug connected to the F. M. loop in the cabinet.
2-For Additional Sensitivity on ALL ranges:
*Philco Dipole Outdoor Aerial, Part No. 45-2926. Philco Aerial Coupler, Part No. 45-1361.
The coupler plugs into the socket at the back of the chassis in place of the plug connected to the F. M. loop. The aerial transmission line then connects to the terminals on the coupler nfarked "red" and "black." The local distance switch on the coupler connects or disconnects the outdoor aerial from the standard broadcast and shortwave tuning ranges. The dipole remains connected to the F. M. band regardless of the position of the switch.
3-For Additional Sensitivity on Standard Broadcast and Shortwave Only:

Philco Safety Aerial, Part No. 40-6370.
Philco Aerial Coupler, Part No. 45-1361.
Connect the single wire lead-in of the aerial to the "black" terminal on the aerial coupler.

* Accessories for this aerial are the Philco Aerial Mast Kit, the Philco Reflector Kit and Philco High Efficiency Transmission Line. See Service Bulletin No. 396 on Dipole Aerials.

Note: When installing the F. M. Philco Outdoor Dipole Aerial, it is very important that the aerial compensating condensers of the standard and shortwave band are repadded.

ELECTRIC PUSH-BUTTON TUNING ADJUSTMENTS

The automatic tuning mechanism consists of nine (9) pushbuttons. Five of the push-buttons are used for selecting standard broadcast stations, one for the power control (ON-OFF); and three for selecting standard tuning, shortwave and F. M. (Frequency Modulation).

Viewing the front of the cabinet from left to right the first push-button is the power control (ON-OFF), the next five push-buttons for tuning standard broadcast stations, and the seventh, eighth and ninth for selecting the tuning ranges standard, shortwave and F. M., respectively.
When setting up stations on the push-buttons the lowest frequency station is set up in the second push-button from the left and the remaining stations according to increasing frequency in the next four push-buttons. These push-buttons are adjusted by the padders located on the rear of the chassis.

* The second push-button from the left can also be adjusted for reception of the sound channel of a television program received by special Philco television radios. This push-button may also be used in conjunction with a Philco Wireless Record Player.

The frequency ranges covered by the station tuning pushbuttons and procedure for adjusting is as follows:

Padders right to left from rear	Circuit	Buttons left to right from front	Frequency Range
1 ...On-OFF			
$1 \ldots \ldots .\left\{\begin{array}{c}\text { Ant. } \\ \text { Osc. }\end{array}\right\} \ldots \ldots 2 \ldots 540$ to 1000 KC			
$2 \ldots \ldots .\left\{\begin{array}{c}\text { Ant. } \\ \text { Osc. }\end{array}\right\} \ldots .3 \ldots 600$ to 1200 KC			
$3 \ldots \ldots .\left\{\begin{array}{c}\text { Ant. } \\ \text { Osc. }\end{array}\right\} \ldots .4 \ldots .650$ to 1300 KC			
$4 \ldots \ldots .\left\{\begin{array}{c}\text { Ant. } \\ \text { Osc. }\end{array}\right\} \ldots . .5 \ldots .850$ to 1500 KC			
$5 \ldots \ldots .\left\{\begin{array}{c}\text { Ant. } \\ \text { Osc. }\end{array}\right\} \ldots .6 \ldots 900$ to 1600 KC			
7Standard Band			
$8 \ldots$...Shortwave Band			
		$9 \ldots$	equency Modulation

ALIGNING R. F. AND I. F. COMPENSATORS

The following procedure is the same for both models:

EQUIPMENT REQUIRED

1. SIGNAL GENERATOR
2. ALIGNING INDICATOR:
3. TOOLS

Covering the frequency of the receiver, such as the Philco Model 070.
Audio Output Meter. Philco Models 027 andl 028. Circuit testers contain a sensitive output meter and are recommended.
Philco Fiber Screw Driver, Part No. 45-2610.

CONNECTING ALIGNING INSTRUMENTS

Audio Output Meter: Terminal No. 1 is provided on the loop aerial panel for connecting one lead of the audio output meter to the voice coil of the speaker. The other lead of the meter is connected to the chassis. When using these connections, the lowest A. C. scale of the meter must be used. (0 to 10 volts.)

The audio output meter can also be connected between the plate of the output tube and the chassis.
Signal Generator: When adjusting the "I. F." padders, the high side of the signal generator is connected through a . 1 mfd condenser to the points indicated in signal generator column "output connections" to receiver in the tabulations below.

When aligning the R. F. padders a loop is made from a few turns of wire and connected to the signal generator output terminals; the loop is then placed two or three feet from the loop in the cabinet and dipole aerial lead. Do not remove the receiving loops from the cabinet. It is necessary when adjusting the padders, that the receiver be left in the cabinet.

After connecting the aligning instruments adjust the compensators in the order shown in the tabulation below. Location of the compensators are shown on the schematic diagram. If the output meter pointer goes off scale when adjusting the compensators, reduce the strength of the signal from the generator.

STANDARD AND S. W. BANDS ALIGNING PROCEDURE

	SIGNAL GENERATOR		RECEIVER			
Operations In Order	Output Connections	Dial Setting	Dial Setting	Control Settings	Adjust Compensators in Order	Special Instructions
- 1	High side to No. 4 terminal loop panel	455 KC	580 KC	Vol. max. push-button Bdest. "IN"	55A, 43C, 33B, 33A	
2	Use loop on generator	1500 KC	1500 KC	"	, 6	Note A
3	Use loop on generator	580 KC	580 KC	"	6 F	Roll Tuning Condensers Note B
4	Use loop on generator	Rea	ust as given	n Operation 2		
5	Use loop on generator	15 MC	15 MC	Push-button S. W. "IN"	6D, 6A	Note C

FREQUENCY MODULATION ALIGNING PROCEDURE

Note: The Frequency Modulation Circuits Must Be Adjusted With the Dipole Aerial Connected.

CRITICAL WIRING LOCATIONS

The following items on these sets are critical for location and position. See Fig. 3 for locations of wires and parts.

1. Green lead and yellow lead from third I. F. coil must be short, direct, and symmetrically spaced from sub-base. Adding capacity to the green lead will narrow the discriminator curve, while adding capacity to the yellow lead will widen the discriminator curve.
2. The XXFM grid lead must be dressed away from the discriminator coil wiring in $42-355$ and $42-390$ with the lug provided for that purpose. Failure to do this will result in distortion at low volume control settings.
3. The black lead of the 1 st I. F. coil must be dressed along the sub-base and away from the yellow and orange leads of the same coil. Proximity of these leads may result in decreased sensitivity at certain points of the broadcast band
because of oscillator harmonics feeding through the 4.3 MC I. F. channel to build up A. V. C. voltage.
4. The blue and white and the white leads from the loop terminal panel must have one complete twist. This is necessary to maintain the proper inductance for shortwave operation, and to prevent loose S . W. antenna padding.
5. Grounding must be maintained at all original points. Any change in grounding of the R. F. wiring will cause serious mistracking of the F. M. band.
6. The brass indicator tabs must not be allowed to touch the sub-base. Any accidental connection from the push-button shafts to ground will cause misalignment of the F. M. band.
7. All I. F. coil wires must be brought out of the designated sub-base holes and kept free from wires coming out other holes. This is necessary to maintain the proper 4.3 MC I. F. curves.
8. The leads from the small gang sections are part of the F. M. tuned circuits and must be maintained to specified lengths for proper F. M. tracking.
F. M. BAND ALIGNING PROCEDURE

	SIGNAL GENERATOR			RECEIVER		
Operations in Order	Output Connections	Dial Setting	Dial Setting	Control Settings	Adjust Compensators in Order	$\begin{gathered} \text { Special } \\ \text { Instructions } \end{gathered}$
1	2nd I. F., F. M. input connection	4.3 MC	580 KC	Vol. max. F. M. push- button "IN"	$\begin{aligned} & 55 \mathrm{C} \text { (Note D) } \\ & 55 \mathrm{~B} \text { (Note } \mathrm{E} \text {) } \end{aligned}$	
2	$\begin{aligned} & \text { 1st I. F., F. M. input } \\ & \text { connection } \end{aligned}$	4.3 MC	580 KC	F. M. push-button "IN"	43A, 43B (Note F)	
3	High side to No. 1 contact, F. M. socket. Ground to No. 2 contact	4.3 MC	580 KC	F. M. push-button "IN'	33C, 33D (Note F)	
4	Use test loop on generator; place near dipole aerial	49 MC	$\stackrel{90}{(\text { Note G) }}$	F. M. push-button "IN"	$\begin{aligned} & \text { 6C (Note G) } \\ & 6 \text { (Note H) } \end{aligned}$	Roll tuning condenser when ad- justing 6 B . Note B
5	"	49 MC	90	F. M. push-button "IN"	6 C oscillator	

NOTE A.-DIAL CALIBRATION: In order to adjust the receiver correctly, the dial pointer must be aligned the receiver correcty,
to track properly with the tuning condenser. To ad-
just the dial, proceed as follows: With the tuning conjust the dial, proceed as follows: With the tuning con-
denser closed (maximum capacity), set the dial pointer
on the extreme left index line at the low frequency on the extreme left index
NOTE B.-When adjusting the low frequency compensator of the broadcast or the aerial padders of the high frequency tuning range; the receiver tuning condenser must be adjusted (rolled) as follows: First, tune the compensator for maximum output, then vary put. Now turn the compensator slightly to the right or left and again vary the receiver tuning condenser for maximum output. This procedure of first setting the compensator and then varying the tuning conobtained.
obtained.
NOTE.-Adjust compensator (6D) to the second
signal peak from the closed position (maximum ca-
pacity). The aerial compensator (6A) must also be adjusted to maximum on the first signal peak by roll ing the tuning condenser. (See Note B.)
NOTE D.-With the signal generator set to 4.3 MC , padder (55 C) is adjusted to the point where minimum signal indication is observed on the output meter
NOTE E.-Turn the signal generator first to approximately 125 KC below 4.3 MC (4.17 MC) and then 125 KC above 4.3 MC (4.42 MC). A signal peak should be observed on the output meter at approximately
each of these points $(4.17$ and 4.42$)$. The two peak each of these points signals should be of equal reading on the output meter and equally spaced in frequency each side of 4.3 MC . If the peaks are unequal in amplitude, padder
$(55 \mathrm{~B})$ must be adjusted in the direction necessary to (55B) must be adjusted in the direction necessary to
make both peaks equal. This is done by slightly turnmake both peaks equal. This is done by slightly turnand below 4.3 to observe peaks. After equal peaks readings are obtained, set the signal generator to 4.3
4.3 MC. If a signal indication is observed readjust padder (55 C) until zero reading is obtained on the should be reset for equal peaks as given above.

NOTE F.-Adjust padders 43A, 43B, 33C, and 33D for equal signal peaks and equal frequency spacing each side of 4.3 MC .
NOTE G.-The dial scale numbers are listed in NOTE G.-The dial scale numbers are listed in
ienths of megacycles less the first digit: i. e., 49 MC is $90,48.5$ is 85 . Set the tuning dial pointer to 90 on the F. M. scale. Adjust padder (6C) to the point output meter.

NOTE H.-In order to adjust padder (6B) the signa Nenerator should be set to either the signal peak approximately 125 KC below 49 MC (48.875 MC), or 125 KC above 49 MC (49.125 MC) Adjust padder ' $(6 \mathrm{~B}$) to maximum output reading on either of these peak sig-
nals. As padder 6 B is being adjusted roll the tuning nals. As padder 6B is being adjusted roll the tuning
condenser as given in Note B.

REPLACEMENT PARTS—Models 42-355, 42-390

Sch. No.	Description	Part No.	Sch. No.	Description	Part No.	Sch. No.	Description	Part No.
1.	$\underset{\text { F. }}{\text { F. M. }}$ M. Loop Aerial (Model ${ }^{\text {a }}$ (M2-355)	$76-1384$ $76-1346$	24 C .	Push-button ${ }_{\text {Button) }}^{\text {Compensator }}$ (Nart of 24)		63.	Resistor (2.2 megohms)	33-522339
2.	F. M. Loop Aerial (Model ${ }_{\text {S }}$ Socket (on Chassis-F. M. Loop	76-1346	24D.	Button) (Part of 24)		64.	Tone Control (Bass) Mtg. Nut	33-5460 $\mathbf{W - 2 1 5 7}$
	Aerial)	27-6181		Button) (Part of 24)		65.	Mica Condenser (100 mmfd)	60-110157
	Mtg. Rivet	W-207	25.	Ph-button Oscillator oil (No.		66.	Condenser (.01 mfd , 400 volts)	30-4572
3.	$\underset{\text { Aerial }}{\text { Terminal }}$ Panel (on Chassis, Loop	38-9870	25A.	Push-button Oscillator Coil (No. 2	32-3780	67. 68.	Condenser ($(.006 \mathrm{mmfd})$	$\begin{array}{r} 30-4591 \\ 33-368339 \end{array}$
4.	Mtg. Rivet	$\stackrel{\text { W-207 }}{ }$		P. B.)	32-3780	69.	Mica Condenser (100 mmfd)	60-110157
	Loop Aerial (Brdcst-S. W.) (Model 42-355)	76-1306	25B.	Push-button Oscillator Coil (No. 3 P. B.)	32-3780	70.	Volume Control	$33-5477$ $\mathrm{~W}-2157$
	Mtg. Screw	W-2071	25 C .	sh-button Oscillator oil (No. 4		71.	Condenser (. $05 \mathrm{mfd}, 200$ volts)	30-4519
	Loop Aerial (Brdcst.-S. W.)			P. B.) Push-button Oscillator Coil (No. 5	32-3779	72.	Resistor (10 megohms)	33-610339
	(Model 42-390) Mtg. Sleeve	$\begin{aligned} & 76-1307 \\ & \end{aligned}$	25D.	Push-button Oscillator Coil (No. 5 P. B.)	32-3779	73.	Condenser $\left.{ }^{(150} \mathrm{mmfd}\right)$ Resistor ($470,000 \mathrm{ohms}$)	$\begin{aligned} & 60-115137 \\ & 33-447339 \end{aligned}$
	Mtg. Sleeve	56-1545		Coil Clip	56-2250	75.	Tone Control (Treble)	33-5461
	Spring Washer	28-4186		Iron Core Screw Clamp	56-6100		Mtg. Nut	W-2157
	Screw	W-288	26.	Iron Core Screw Clamp Push-button Switch	56-2249 $42-1692$	$\begin{aligned} & 76 . \\ & 77 . \end{aligned}$	Condenser (${ }^{\text {c }}$ (01 mfd , 400 volts) Condenser	$\begin{array}{r} 30-4572 \\ 60-110157 \end{array}$
	Washer	W-648	26 A.	Push-button Power Switch		78.	Condenser ($01 \mathrm{mfd}, 400$ volts)	$60-101572$ $30-4572$
5.	Aerial Transformer (Broadcast			(Part of 26)		79.	Resistor (220,000 ohms)	33-422339
	Band) (Model 42-385)	32-3811		Mtg. Grommet	27-4596	80.	Resistor (1 megohm)	33-510339
	Aerial Transformer (Broadcast Band) (Model 42-390)	32-3790		$\xrightarrow[\text { Mtg. }]{\text { Mtg. Serew }}$	56-1505	81.	Resistor ($470,000 \mathrm{ohms}$) Condenser (${ }^{\text {a }}$ ($01 \mathrm{mfd}, 400$ volts)	$33-447339$ $30-4572$
	Mtg. Clip	28-5002	27.	Mica Condenser (250 mmfd)	60-125257	83.	Resistor (3900 ohms)	33-239339
6.	Compensator (Broadcast Aerial)	31-6443	28.	Resistor (2.2 megohms)	33-522339	84.	Condenser (.001 mfd)	30-4601
6A.	Compensator (S. W. Aerial) (Part of 6)		29.		$33-227339$ $30-4518$	85.	Output Transformer Speaker (Model 42-355)	$\begin{aligned} & 32-8120 \\ & 36-1519 \end{aligned}$
6B.	Compensator (F. M. Aerial)		31.	Resistor (100,000 ohms)	33-410339		Speaker (Model 42-390)	36-1552-4
	(Part of 6)		32.	Condenser ($.05 \mathrm{mfd}, 400 \mathrm{volts}$)	30-4518		Cable (Model 42-355)	41-3541
6 C .	Compensator (F. M. Osscillator)		33.	1st I. F. Transformer	32-3787		Mtg. Washer	27-7467
6 D.	(Part of 6) Compensator (S. W. Oscillator)		33A.	Primary Compensator (455 KC) (Part of 33)			Mtg. Nut Cone Assembly (For Speaker	W-124
	(Part of 6)		33B.	Secondary Compensator (455 KC)			Cone-1519-2) (For speaker	36-4202
6 E .	Compensator (Broadcast-Series) (Part of 6)		C.	(Part of 33) Primary Compensator (F. M			Cone Assembly (For Speaker	
6 F .	Compensator (Broadcast-Oscillator)		33 C.	Primary Compensator (F. M. 4.3			Cone Assembly (For Speaker	36-4166
7.	(Part of 6) ${ }^{\text {(}}$ (${ }^{\text {a }}$		33D.	Secondary Compensator (F. M.			36-1519-4)	36-4172
	(F. M.)	32-3792	33 E .	Condenser (4000 mmfd) (Part of 33)			36-1552-4)	36-4212
	Mtg. Clip	28-5002	33 F .	Resistor (47,000 ohms) (Part of 33)		87.	Field Coil (Replace Speaker	
8.	Tuning Condenser (two sections- Standard \& F. M.)	31-2592	34.	Mtg. Nut (I. F. Trans.) Resistor (4700 ohms)	W-1949 $33-247339$	88.	36-1519) Bias Resistor	33-3416
	Drive Cord (Pointer)	31-2576	35.	Resistor ($05 \mathrm{mfd}, 200$ volts)	30-4519	89.	Electrolytic Condenser (18 mfd)	
	Spring (Pointer Drive)	28-8953	36.	Resistor (100 ohms)	33-110336		Clamp	56-1848
	Drive Cord (Tuning Cond.) Spring (Drive Cord)	$\begin{aligned} & 31-2577 \\ & 28-8751 \end{aligned}$	37. 38.	Resistor (68 ohms) Condenser (. $05 \mathrm{mfd}, 200$ volts)	$\begin{array}{r} 33-068339 \\ 30-4519 \end{array}$	90.	Power Transformer (115 volts, 60 cycle) (Model 42-355)	32-8187
	Drive Drum (Tuning Cond.)	76-1293	39.	Resistor (100,000 ohms)	33-410339		Power Transformer (115 volts, 60	
	Mtg. Grommet	27-4596	40.	Resistor (12,000 ohms)	33-312339		cycle) (Model 42-390)	32-8177
	Mtg. Sleeve	56-1505	41.		$30-4518$ $30-4572$		Shield	56-1538 $\mathrm{W}-1974$
	Tuning Shaft	56-6152	43.	2nd I. F. Transformer	32-3788	91	Power Line Filter Condenser (.01-	
	"C" Washer (Mtg. Shaft)	28-2043	43 A .	Primary Compensator (F. M. 4.3			01 mpd)	3903-ODG
9.	Silver Mica Condenser (230 mmfd)	30	43 B	MC)		92.	Pilot Lamps	34-2064
	Silver Mica Condenser (190 mmfd)	30	43B.	$\begin{aligned} & \text { condar } \\ & \text { MC } \end{aligned}$			Mocket Assembly (Dial Lights)	$\begin{aligned} & 57-1404 \\ & 76-1295 \end{aligned}$
	(Model 42-390)	20-019017	43 C.	Secondary Compensator (455 KC)			Miscellaneous Parts	
11.	Condenser (Wire and Lug)		43 D.	Resistor ($47,000 \mathrm{ohms}$) (Part of 43)	33-347339		Bezel (Cabinet)	54-4099
	(Model 42-355)	30-1213	44.	Resistor (3300 ohms)	33-233339		Cabinet (Model 42-355)	W-2071
	Silver Mica Condenser (185 mmfd)		45.	Resistor (${ }^{\text {R }}$ (150 ohms) Resistor (1000 ohms)	33-115336		Cabinet (42-390)	10578A
12.	Resistor (10,000 ohms)	20-018511	47.		$33-210339$ $30-4519$		Cord (Power)	L-3199
13.	Mica Condenser (250 mmfd)	60-125257	48.	Resistor (2.2 megohms)	33-522339		Dial Background Plate	27-9903
14.	Silver Mica Condenser (370 mmfd)	30-1110	49.	Electrolytic Condenser ($8-8 \mathrm{mfd}$)	30-2513		Rubber Corner (Dial Mtg.)	54-4015
15.	Resistor ($10,000 \mathrm{ohms}$)	33-310339	50.	Resistor (4700 ohms)	33-247339		Spring (Background Plate)	28-8908
17.		$33-322339$ $30-1110$	51.	Resistor (2.2 megohms) ${ }_{\text {Condenser }}(.01 \mathrm{mfd}, 400$ volts)	$33-522339$ $30-4572$		Mtg. Clamp (Dial)	$\stackrel{56-1517}{\mathrm{~W}-1974}$
18.	Mica Condenser (500 mmfd)	60-150157	53.	Condenser ($.05 \mathrm{mfd}, 200$ volts)	30-4519		Pointer	56-2331
19.	Resistor (10 ohms)	33-010339	54.	Condenser ($01 \mathrm{mfd}, 400$ volts)	30-4572		Knob (Push-Buttons)	54-4111
20.	Resistor (47,000 ohms) Mtg. Clip	$\begin{array}{r} 33-347339 \\ 28-5002 \end{array}$	55.	3rd I. F. Transformer Primary Compensator (455 KC)	32-3789		Spring (P. B. Knobs) Knob (Tuning, Volume, Tone)	$\begin{aligned} & 76-1294 \\ & 54-4105 \end{aligned}$
21.	S. W. Oscillator Transformer	28-5002		(Part of 55)			Rubber Grommet (Chassis Mtg.)	27-4571
	(Model 42-355) S. W. Oscillator Transformer	32-3812	55B.	Primary MC) (Part of 55) (F. M. 4.3			Screw (Chassis Mtg.) Socket (41 tube)	$\begin{aligned} & W-1345 \\ & 27-6168 \end{aligned}$
	(Model 42-390)	32-3793	55 C.	Secondary Compensator (F. M. 4.3			Socket ($65 . \mathrm{G}$)	27-6174
	Mtg. Clip	28-5002		MC) (Part of 55) (Pat			Socket (Loktal Tubes)	27-6177
22.	Broadcast Oscillator Transformer Mtg. Clip	$\begin{aligned} & 32-3791 \\ & 28-5002 \end{aligned}$	55D.	Condenser (125 mmfd) (Part of 55) Mtg. Nut (I. F. Mtg.)	W-1949		Socket (Single Prong-F. M. Test) Rivets (Mtg. Sockets)	27-6180
23.	Resistor (56 ohms)	33-056339	56.	Mica Condenser (500 mmfd)	60-150227		Tab Kit	40-6663
24.	Push-button Compensator (No. 1		57.	Condenser ($1 \mathrm{mfd}, 200$ volts)	30-4586		Cover Tabs	27-5743
	Button)	31-6439	58.	Resistor (470,000 ohms)	33-447339		Tab (Broadcast)	27-5739
24 A .	Push - Button Compensator (No. 2 Button) (Part of 24)		59. 60.		$\begin{aligned} & 33-510339 \\ & 60-115137 \end{aligned}$		Tab (S. W.)	27-5740
24B.	Push-button Compensator (No. 3		61.	Resistor ($220,000 \mathrm{ohms}$)	33-422339		Tab (ON-OFF)	27-5742
	Button) (Part of 24)		62.	Condenser ($01 \mathrm{mfd}, 400$ volts)	30-4572		Tab (Television)	27-5779

FIG. 2-PART LOCATIONS, UNDERSIDE

FIG. 3-CRITICAL WIRING LOCATIONS,
F. M. ALIGNING

